Premium
Degraded auditory processing in a rat model of autism limits the speech representation in non‐primary auditory cortex
Author(s) -
Engineer C.T.,
Centanni T.M.,
Im K.W.,
Borland M.S.,
Moreno N.A.,
Carraway R.S.,
Wilson L.G.,
Kilgard M.P.
Publication year - 2014
Publication title -
developmental neurobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.716
H-Index - 129
eISSN - 1932-846X
pISSN - 1932-8451
DOI - 10.1002/dneu.22175
Subject(s) - auditory cortex , autism , neuroscience , valproic acid , psychology , biology , audiology , epilepsy , medicine , developmental psychology
Although individuals with autism are known to have significant communication problems, the cellular mechanisms responsible for impaired communication are poorly understood. Valproic acid (VPA) is an anticonvulsant that is a known risk factor for autism in prenatally exposed children. Prenatal VPA exposure in rats causes numerous neural and behavioral abnormalities that mimic autism. We predicted that VPA exposure may lead to auditory processing impairments which may contribute to the deficits in communication observed in individuals with autism. In this study, we document auditory cortex responses in rats prenatally exposed to VPA. We recorded local field potentials and multiunit responses to speech sounds in primary auditory cortex, anterior auditory field, ventral auditory field. and posterior auditory field in VPA exposed and control rats. Prenatal VPA exposure severely degrades the precise spatiotemporal patterns evoked by speech sounds in secondary, but not primary auditory cortex. This result parallels findings in humans and suggests that secondary auditory fields may be more sensitive to environmental disturbances and may provide insight into possible mechanisms related to auditory deficits in individuals with autism. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 972–986, 2014