z-logo
Premium
Activation of PI3K and R‐ras signaling promotes the extension of sensory axons on inhibitory chondroitin sulfate proteoglycans
Author(s) -
Silver Lee,
Michael James V.,
Goldfinger Lawrence E.,
Gallo Gianluca
Publication year - 2014
Publication title -
developmental neurobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.716
H-Index - 129
eISSN - 1932-846X
pISSN - 1932-8451
DOI - 10.1002/dneu.22174
Subject(s) - biology , microbiology and biotechnology , pi3k/akt/mtor pathway , axon , growth cone , signal transduction , dorsal root ganglion , protein kinase b , neuroscience , sensory system
Chondroitin sulfate proteoglycans (CSPGs) are extracellular inhibitors of axon extension and plasticity, and cause growth cones to exhibit dystrophic behaviors. Phosphoinositide 3‐kinase (PI3K) is a lipid kinase activated by axon growth promoting signals. In this study, we used embryonic chicken dorsal root ganglion neurons to determine if CSPGs impair signaling through PI3K. We report that CSPGs inhibit PI3K signaling in axons and growth cones, as evidenced by decreased levels of phosphorylated downstream kinases (Akt and S6). Direct activation of PI3K signaling, using a cell permeable phosphopeptide (PI3Kpep), countered the effects of CSPGs on growth cones and axon extension. Both overnight and acute treatment with PI3Kpep promoted axon extension on CSPG‐coated substrates. The R‐Ras GTPase is an upstream positive regulator of PI3K signaling. Expression of constitutively active R‐Ras promoted axon extension and growth cone elaboration on CSPGs and permissive substrata. In contrast, an N‐terminus‐deleted constitutively active R‐Ras, deficient in PI3K activation, promoted axon extension but not growth cone elaboration on CSPGs and permissive substrata. These data indicate that activation of R‐Ras‐PI3K signaling may be a viable approach for manipulating axon extension on CSPGs. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 918–933, 2014

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here