Premium
Neuropeptide orphanin FQ inhibits dendritic morphogenesis through activation of RhoA
Author(s) -
Alder Janet,
Kallman Seth,
Palmieri Alicia,
Khadim Farah,
Ayer Jennifer J.,
Kumar Sujata,
Tsung Katherine,
Grinberg Ilya,
ThakkerVaria Smita
Publication year - 2013
Publication title -
developmental neurobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.716
H-Index - 129
eISSN - 1932-846X
pISSN - 1932-8451
DOI - 10.1002/dneu.22101
Subject(s) - dendritic spine , microbiology and biotechnology , tropomyosin receptor kinase b , nop , rhoa , neuroscience , biology , brain derived neurotrophic factor , neurotrophic factors , neuropeptide , neurite , neurotrophin , hippocampal formation , chemistry , receptor , signal transduction , biochemistry , in vitro
Brain‐derived neurotrophic factor (BDNF) plays a facilitatory role in neuronal development and promotion of differentiation. Mechanisms that oppose BDNF's stimulatory effects create balance and regulate dendritic growth. However, these mechanisms have not been studied. We have focused our studies on the BDNF‐induced neuropeptide OrphaninFQ/ Nociceptin (OFQ); while BDNF is known to enhance synaptic activity, OFQ has opposite effects on activity, learning, and memory. We have now examined whether OFQ provides a balance to the stimulatory effects of BDNF on neuronal differentiation in the hippocampus. Golgi staining in OFQ knockout (KO) mice revealed an increase in primary dendrite length as well as spine density, suggesting that endogenous OFQ inhibits dendritic morphology. We have also used cultured hippocampal neurons to demonstrate that exogenous OFQ has an inhibitory effect on dendritic growth and that the neuropeptide alters the response to BDNF when pre‐administered. To determine if BDNF and OFQ act in a feedback loop, we inhibited the actions of the BDNF and OFQ receptors, TrkB and NOP using ANA‐12 and NOP KO mice respectively but our data suggest that the two factors do not act in a negative feedback loop. We found that the inhibition of dendritic morphology induced by OFQ is via enhanced RhoA activity. Finally, we have evidence that RhoA activation is required for the inhibitory effects of OFQ on dendritic morphology. Our results reveal basic mechanisms by which neurons not only regulate the formation of proper dendritic growth during development but also control plasticity in the mature nervous system. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 769–784, 2013