Premium
Characterization of the G‐protein‐coupled membrane‐bound estrogen receptor GPR30 in the zebra finch brain reveals a sex difference in gene and protein expression
Author(s) -
Acharya Kalpana D.,
Veney Sean L.
Publication year - 2012
Publication title -
developmental neurobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.716
H-Index - 129
eISSN - 1932-846X
pISSN - 1932-8451
DOI - 10.1002/dneu.22004
Subject(s) - zebra finch , biology , gper , sexual dimorphism , songbird , estrogen receptor , estrogen , estrogen receptor alpha , medicine , receptor , endocrinology , microbiology and biotechnology , genetics , neuroscience , paleontology , cancer , breast cancer
Abstract Estradiol‐induced structural dimorphisms exist in the songbird brain. However, how they arise is not clear since there is a scarce distribution of ERα and lack of ERβ in song control nuclei. This suggests that other receptors are involved. The G‐protein coupled membrane‐bound estrogen receptor, GPR30, is a candidate but has never been investigated in songbirds. In this study, we characterized its gene and protein in the zebra finch brain. Analysis of the putative GPR30 protein sequence revealed a strong similarity to avian and mammalian homologues. Quantitative PCR indicated that the gene was elevated in the telencephalon of both sexes from posthatching day (P) 15 to P45, with a male‐biased sex difference at P21 and P30. In comparison, expression at younger posthatching ages and in adults was significantly less. At P21, GRP30 protein was widespread, nonuniform, and overlapped with song control nuclei. Of particular interest, the number of immunoreactive cells was greatest in HVC and RA, but less in LMAN and Area X. Labeling in HVC was also dimorphic; with more cells present in males than in females. In parallel with the gene, by adulthood, protein expression was reduced across most brain regions. Taken together these data suggest that GPR30 may contribute to differences in song system development by mediating dimorphic responses to estrogens. In addition, the extensive protein distribution indicates that it may also have a role in general brain development in both sexes. © 2011 Wiley Periodicals, Inc. Develop Neurobiol, 2012