z-logo
Premium
Homer proteins shape Xenopus optic tectal cell dendritic arbor development in vivo
Author(s) -
Van KeurenJensen Kendall R.,
Cline Hollis T.
Publication year - 2008
Publication title -
developmental neurobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.716
H-Index - 129
eISSN - 1932-846X
pISSN - 1932-8451
DOI - 10.1002/dneu.20659
Subject(s) - biology , xenopus , ampa receptor , synapse , neuroscience , excitatory postsynaptic potential , neurotransmission , microbiology and biotechnology , neuron , glutamate receptor , genetics , inhibitory postsynaptic potential , gene , receptor
Considerable evidence suggests that the Homer family of scaffolding proteins contributes to synaptic organization and function. We investigated the role of both Homer 1b, the constitutively expressed, and developmentally regulated form of Homer, and Homer 1a, the activity‐induced immediate early gene, in dendritic arbor elaboration and synaptic function of developing Xenopus optic tectal neurons. We expressed exogenous Homer 1a or Homer 1b in developing Xenopus tectal neurons. By collecting in vivo time lapse images of individual, EGFP‐labeled and Homer‐expressing neurons over 3 days, we found that Homer 1b leads to a significant decrease in dendritic arbor growth rate and arbor size. Synaptic transmission was also altered in developing neurons transfected with Homer 1b. Cells expressing exogenous Homer 1b over 3 days had a significantly greater AMPA to NMDA ratios, and increased AMPA mEPSC frequency. These data suggest that increasing Homer 1b expression increases excitatory synaptic inputs, increases synaptic maturation, and slows dendritic arbor growth rate. Exogenous Homer 1a expression increases AMPA mEPSC frequency, but did not significantly affect tectal cell dendritic arbor development. Changes in the ratio of Homer 1a to Homer 1b may signal the neuron that overall activity levels in the cell have changed, and this in turn could affect protein interactions at the synapse, synaptic transmission, and structural development of the dendritic arbor. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here