z-logo
Premium
Axon extension in the fast and slow lanes: Substratum‐dependent engagement of myosin II functions
Author(s) -
Ketschek Andrea R.,
Jones Steven L.,
Gallo Gianluca
Publication year - 2007
Publication title -
developmental neurobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.716
H-Index - 129
eISSN - 1932-846X
pISSN - 1932-8451
DOI - 10.1002/dneu.20455
Subject(s) - growth cone , myosin , biology , microbiology and biotechnology , axon , lamellipodium , filopodia , biophysics , actin , cytoskeleton , laminin , microtubule , biochemistry , cell , extracellular matrix
Abstract Axon extension involves the coordinated regulation of the neuronal cytoskeleton. Actin filaments drive protrusion of filopodia and lamellipodia while microtubules invade the growth cone, thereby providing structural support for the nascent axon. Furthermore, in order for axons to extend the growth cone must attach to the substratum. Previous work indicates that myosin II activity inhibits the advance of microtubules into the periphery of growth cones, and myosin II has also been implicated in mediating integrin‐dependent cell attachment. However, it is not clear how the functions of myosin II in regulating substratum attachment and microtubule advance are integrated during axon extension. We report that inhibition of myosin II function decreases the rate of axon extension on laminin, but surprisingly promotes extension rate on polylysine. The differential effects of myosin II inhibition on axon extension rate are attributable to myosin II having the primary function of mediating substratum attachment on laminin, but not on polylysine. Conversely, on polylysine the primary function of myosin II is to inhibit microtubule advance into growth cones. Thus, the substratum determines the role of myosin II in axon extension by controlling the functions of myosin II that contribute to extension. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here