z-logo
Premium
Sexually dimorphic SCAMP1 expression in the forebrain motor pathway for song production of juvenile zebra finches
Author(s) -
Tang Yu Ping,
Peabody Camilla,
Tomaszycki Michelle L.,
Wade Juli
Publication year - 2007
Publication title -
developmental neurobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.716
H-Index - 129
eISSN - 1932-846X
pISSN - 1932-8451
DOI - 10.1002/dneu.20354
Subject(s) - zebra finch , biology , forebrain , sexual dimorphism , taeniopygia , juvenile , cerebrum , in situ hybridization , messenger rna , neuroscience , endocrinology , central nervous system , genetics , gene
Mechanisms regulating sexual differentiation of the zebra finch song system are not well understood. The present study was designed to more fully characterize secretory carrier membrane protein 1 (SCAMP1), which was identified in a cDNA microarray screen as showing increased expression in the forebrains of developing male compared with female zebra finches. We completed the sequence of the open reading frame and used in situ hybridization to compare mRNA in song control regions of juvenile (25‐day‐old) individuals. Expression was significantly greater in the HVC (used as a proper name) and robust nucleus of the arcopallium (RA) in males than in females. Immunohistochemistry revealed that SCAMP1 protein is also expressed in these two brain regions, and qualitatively appears greater in males. Western analysis confirmed that the protein is increased in the telencephalon of males when compared with females at 25 days of age. These results are consistent with the idea that SCAMP1 is involved in masculinization of these brain areas, perhaps facilitating the survival of cells within them. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here