z-logo
Premium
A role for innate immunity in type 1 diabetes?
Author(s) -
Beyan H.,
Buckley L. R.,
Yousaf N.,
Londei M.,
Leslie R. D. G.
Publication year - 2002
Publication title -
diabetes/metabolism research and reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.307
H-Index - 110
eISSN - 1520-7560
pISSN - 1520-7552
DOI - 10.1002/dmrr.341
Subject(s) - innate immune system , immune system , immunology , acquired immune system , biology , autoimmunity , innate lymphoid cell , immunity , ccl18 , autoimmune disease , effector , antibody
Abstract Two arms of the immune system, innate and adaptive immunity, differ in their mode of immune recognition. The innate immune system recognizes a few highly conserved structures on a broad range of microorganisms. On the other hand, recognition of self or autoreactivity is generally confined to the adaptive immune response. Whilst autoimmune features are relatively common, they should be distinguished from autoimmune disease that is infrequent. Type 1 diabetes is an immune‐mediated disease due to the destruction of insulin secreting cells mediated by aggressive immune responses, including activation of the adaptive immune system following genetic and environmental interaction. Hypotheses for the cause of the immune dysfunction leading to type 1 diabetes include self‐reactive T‐cell clones that (1) escape deletion in the thymus, (2) escape from peripheral tolerance or (3) escape from homeostatic control with an alteration in the immune balance leading to autoimmunity. Evidence, outlined in this review, raises the possibility that changes in the innate immune system could lead to autoimmunity, by either priming or promoting aggressive adaptive immune responses. Hostile microorganisms are identified by genetically determined surface receptors on innate effector cells, thereby promoting clearance of these invaders. These innate effectors include a few relatively inflexible cell populations such as monocytes/macrophages, dendritic cells (DC), natural killer (NK) cells, natural killer T (NKT) cells and γδ T cells. Recent studies have identified abnormalities in some of these cells both in patients with type 1 diabetes and in those at risk of the disease. However, it remains unclear whether these abnormalities in innate effector cells predispose to autoimmune disease. If they were to do so, then modulation of the innate immune system could be of therapeutic value in preventing immune‐mediated diseases such as type 1 diabetes. Copyright © 2002 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here