Premium
Glucose‐responsive insulin‐producing cells from stem cells
Author(s) -
Kaczorowski David J.,
Patterson Ethan S.,
Jastromb William E.,
Shamblott Michael J.
Publication year - 2002
Publication title -
diabetes/metabolism research and reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.307
H-Index - 110
eISSN - 1520-7560
pISSN - 1520-7552
DOI - 10.1002/dmrr.330
Subject(s) - stem cell , embryonic stem cell , adult stem cell , induced pluripotent stem cell , transplantation , clinical uses of mesenchymal stem cells , biology , microbiology and biotechnology , insulin , stem cell transplantation for articular cartilage repair , induced stem cells , immunology , medicine , endocrinology , biochemistry , gene
Recent success with immunosuppression following islet cell transplantation offers hope that a cell transplantation treatment for type 1 (juvenile) diabetes may be possible if sufficient quantities of safe and effective cells can be produced. For the treatment of type 1 diabetes, the two therapeutically essential functions are the ability to monitor blood glucose levels and the production of corresponding and sufficient levels of mature insulin to maintain glycemic control. Stem cells can replicate themselves and produce cells that take on more specialized functions. If a source of stem cells capable of yielding glucose‐responsive insulin‐producing (GRIP) cells can be identified, then transplantation‐based treatment for type 1 diabetes may become widely available. Currently, stem cells from embryonic and adult sources are being investigated for their ability to proliferate and differentiate into cells with GRIP function. Human embryonic pluripotent stem cells, commonly referred to as embryonic stem (ES) cells and embryonic germ (EG) cells, have received significant attention owing to their broad capacity to differentiate and ability to proliferate well in culture. Their application to diabetes research is of particular promise, as it has been demonstrated that mouse ES cells are capable of producing cells able to normalize glucose levels of diabetic mice, and human ES cells can differentiate into cells capable of insulin production. Cells with GRIP function have also been derived from stem cells residing in adult organisms, here referred to as endogenous stem cell sources. Independent of source, stem cells capable of producing cells with GRIP function may provide a widely available cell transplantation treatment for type 1 diabetes. Copyright © 2002 John Wiley & Sons, Ltd.