z-logo
Premium
Design and development of sequence selective lexitropsin DNA minor groove binders
Author(s) -
Lown J. William
Publication year - 1995
Publication title -
drug development research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.582
H-Index - 60
eISSN - 1098-2299
pISSN - 0272-4391
DOI - 10.1002/ddr.430340207
Subject(s) - computational biology , molecular recognition , dna , topoisomerase , base pair , gene , chemistry , biology , combinatorial chemistry , stereochemistry , biochemistry , molecule , organic chemistry
The concept of lexitropsins, or information‐reading molecules, is introduced within the antigene strategy as an alternative to, and complementary with, the antisense approach for cellular intervention and gene control. Consideration is given to alternative approaches to the development of DNA sequence selective binding agents because of their potential applications in diagnosis and treatment of cancer as well as in molecular biology. The chemical, physical, and pharmacological factors involved in the design of effective lexitropsins are discussed and illustrated with experimental results. Among the factors contributing to the molecular recognition processes are: the presence and disposition of hydrogen bond accepting and donating groups, ligand shape, chirality, stereochemistry, flexibility, and charge. For longer ligands, such as are required to target unique sequences in biological systems (14–16 base pairs), the critical feature is the phasing or spatial correspondence between repeat units in the ligand and the receptor. The recently discovered 2:1 lexitropsin‐DNA binding motif provides a further refinement in molecular recognition in permitting discrimination between GC and CG base pairs. The application of these factors in the design and synthesis of novel agents which exhibit anticancer, antiviral, and antiretroviral properties, and in the inhibition of critical cellular enzymes including topoisomerases, is discussed. The emerging evidence of a relationship between sequence selectivity of the new agents and the biological response they invoke is also described. © 1995 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here