Premium
Near‐infrared imaging of diseases: A nanocarrier approach
Author(s) -
SilindirGunay Mine,
Sarcan Elif Tugce,
Ozer Asuman Yekta
Publication year - 2019
Publication title -
drug development research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.582
H-Index - 60
eISSN - 1098-2299
pISSN - 0272-4391
DOI - 10.1002/ddr.21532
Subject(s) - nanocarriers , nanotechnology , photodynamic therapy , fluorescence lifetime imaging microscopy , materials science , photosensitizer , liposome , near infrared spectroscopy , drug delivery , nanoparticle , fluorescence , chemistry , photochemistry , organic chemistry , physics , quantum mechanics
Abstract Developments in fluorescence imaging, brought popularity to near infrared (NIR) imaging with far‐red and NIR fluorophores applied for biosensing and bioimaging in living systems. Noninvasive NIR imaging gained popularity with the use of effective NIR dyes to obtain macroscopic fluorescence images. Several attributes of NIR dyes make them desirable agents, including high specificity, high sensitivity, minimized background interference, and the ability to easily conjugate with drug delivery systems. However, NIR dyes have some drawbacks and limitations, such as low solubility, low stability, and degradation. To overcome these issues, NIR dyes can be encapsulated in appropriate nanocarriers to achieve effective diagnosis, imaging, and therapy monitoring during surgery. Moreover, the vast majority of NIR dyes have photosensitizer features that can effectuate cancer treatment referred to as photodynamic therapy (PDT). In the near future, by combining NIR dyes with appropriate nanocarriers such as liposomes, polymeric micelles, polymeric nanoparticles, dendrimers, quantum dots, carbon nanotubes, or ceramic/silica based nanoparticles, the limitations of NIR dyes can be minimized or even effectively eliminated to form potential effective agents for imaging, therapy, and therapy monitoring of several diseases, particularly cancer.