Premium
Space‐time ring‐TCM codes with CPM based on the decomposed model for transmission over Rayleigh fading channels
Author(s) -
Pereira A.,
Carrasco R. A.
Publication year - 2006
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.753
Subject(s) - computer science , continuous phase modulation , rayleigh fading , algorithm , fading , time diversity , trellis modulation , space–time code , electronic engineering , decoding methods , telecommunications , engineering
Space–time (ST) coding is a proved technique for achieving high data rates in 3G mobile systems that combines coding, modulation and multiple transmitters and receivers. A novel algorithm is proposed for ST ring trellis‐coded modulation (ST‐RTCM) systems with continuous‐phase modulation (CPM) when the channel coefficients are known to the receiver. This algorithm is based on the CPM decomposed model, which exploits the memory properties of this modulation method, resulting in a straightforward implementation of joint ST coding and CPM, which is particularly suitable for ring codes. This new scheme is used to investigate the performance of the delay diversity code with CPM over slow Rayleigh fading channels, in particular with MSK which is one of the most widely used modulation methods of continuous phase. Furthermore, a feedback version of delay diversity allowed by the decomposition is tested in 1REC and 1RC systems. This feedback configuration is seen to provide good results for low signal‐to‐noise ratios. Simulations results are also provided for multilevel ST‐RTCM codes that achieve a higher throughput than MSK‐coded systems. Additionally the serial concatenation of an outer Reed–Solomon code with an ST‐RTCM code is shown, this combination further reduces the error probability and achieves even more reliable communications. Copyright © 2005 John Wiley & Sons, Ltd.