Premium
Comparison of coded orthogonal frequency division multiplexing and multicarrier code division multiple access systems for power line communications
Author(s) -
Katsis P. L.,
Papadopoulos G. D.,
Pavlidou F.N.
Publication year - 2004
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.682
Subject(s) - computer science , orthogonal frequency division multiplexing , code division multiple access , interleaving , electronic engineering , fading , power line communication , bit error rate , coding (social sciences) , channel (broadcasting) , telecommunications , power (physics) , mathematics , engineering , physics , statistics , quantum mechanics , operating system
Orthogonal frequency division multiplexing (OFDM) and multicarrier code division multiple access (MC‐CDMA) systems are comparatively evaluated for power line communications (PLC) in a frequency‐selective fading environment with additive coloured Gaussian noise which is used to model the actual in‐home power line channel. OFDM serves as a benchmark in order to measure the performance of various MC‐CDMA systems, since multicarrier modulation systems are considered the best candidate for this kind of channel. Both single‐user and multi‐user cases are taken into account, making use of the appropriate combiner schemes to take full advantage of each case. System efficiency is enhanced by the application of different coding techniques, a fact which shows that powerful coding can make the difference under such a hostile medium. The impact of block interleaving is investigated, while the simulation examines how different modulation schemes fair under the imposed channel conditions as well. The performance of the system is assessed by the commonly used bit error rate vs signal‐to‐noise ratio diagrams and there is also a comparison regarding throughput efficiency among all the tested systems. As stated in Section 4, a promising PLC application is attained. Copyright © 2004 John Wiley & Sons, Ltd.