z-logo
Premium
Network dimensioning at the call level for the always‐on network
Author(s) -
Nananukul Soracha
Publication year - 2004
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.680
Subject(s) - dimensioning , computer science , computer network , call admission control , quality of service , call blocking , network packet , call duration , call control , dimension (graph theory) , population , telecommunications , wireless network , demography , sociology , pure mathematics , engineering , wireless , aerospace engineering , mathematics
It is becoming common for the network to provide always‐on access services, where subscribers are guaranteed that their call requests will never be blocked. This paper studies the call‐level link dimensioning for the always‐on network with single‐class traffic. The call‐level QoS requirement is expressed in terms of the probability of a poor‐quality call, which is the probability that a call experiences packet‐level QoS violation at any time during its duration, as opposed to the probability of blocking in the network with call admission control (CAC). The system is modelled as the M/M/infinite system with finite population and an analytic expression for the probability of a poor‐quality call is derived based on performability analysis. The effects of the call‐level traffic characteristics on the required link resources are studied. It is also shown that the call‐level link dimensioning for the always‐on network needs more link resources than the network with CAC, and the call‐level link dimensioning based on the analytic expression can be used to conservatively dimension the always‐on network with arbitrarily distributed call holding time and inter‐call time. The paper also studies the problem of estimating the call‐level traffic characteristics when the knowledge of call boundaries is not available. Copyright © 2004 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here