z-logo
Premium
Large intelligent surfaces: Random waypoint mobility and two‐way relaying
Author(s) -
Pillay Narushan,
Xu Hongjun
Publication year - 2020
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.4505
Subject(s) - relay , computer science , linear network coding , node (physics) , computer network , decodes , waypoint , mobility model , transmission (telecommunications) , block (permutation group theory) , coding (social sciences) , topology (electrical circuits) , decoding methods , algorithm , real time computing , mathematics , network packet , telecommunications , physics , power (physics) , statistics , geometry , quantum mechanics , combinatorics
Summary In this paper, we first investigate the effect of mobility via the random waypoint (RWP) mobility model on the performance of nonaccess point (non‐AP) or AP large intelligent surfaces (LISs). The theoretical average bit error probability (ABEP) for each of these LISs under mobility is formulated. The presented formulation is complicated to solve; hence, the trapezoidal approximation is employed. Simulation results serve to validate the ABEP. Second, we investigate a two‐way relaying (TWR) network assisted by non‐AP or AP LISs. A network with two source/destination nodes with a single relay node employing decode‐and‐forward placed between these nodes is considered. The transmission interval is broken into two transmission phases. In the first phase, the two source nodes transmit information blocks to the relay node assisted by LISs. On receiving these information blocks, the relay node decodes the two information blocks and encodes these into a single information block via the use of network coding. In the second phase, the relay node forwards the network‐coded information block to the destination nodes assisted by LISs, where the intended information block is decoded via network coding. The theoretical ABEP is formulated for the proposed non‐AP and AP LIS‐assisted TWR schemes and is validated by simulation results. RWP mobility is also demonstrated for the proposed TWR schemes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here