Premium
A green cluster‐based routing scheme for large‐scale wireless sensor networks
Author(s) -
Chanak Prasenjit,
Banerjee Indrajit,
Sherratt R. Simon
Publication year - 2020
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.4375
Subject(s) - computer science , cluster analysis , wireless sensor network , computer network , scalability , routing protocol , distributed computing , node (physics) , overhead (engineering) , routing (electronic design automation) , static routing , reliability (semiconductor) , artificial intelligence , power (physics) , physics , structural engineering , quantum mechanics , database , engineering , operating system
Summary In wireless sensor networks (WSNs), clustering has been shown to be an efficient technique to improve scalability and network lifetime. In clustered networks, clustering creates unequal load distribution among cluster heads (CHs) and cluster member (CM) nodes. As a result, the entire network is subject to premature death because of the deficient active nodes within the network. In this paper, we present clustering‐based routing algorithms that can balance out the trade‐off between load distribution and network lifetime “green cluster‐based routing scheme.” This paper proposes a new energy‐aware green cluster‐based routing algorithm to preventing premature death of large‐scale dense WSNs. To deal with the uncertainty present in network information, a fuzzy rule‐based node classification model is proposed for clustering. Its primary benefits are flexibility in selecting effective CHs, reliability in distributing CHs overload among the other nodes, and reducing communication overhead and cluster formation time in highly dense areas. In addition, we propose a routing scheme that balances the load among sensors. The proposed scheme is evaluated through simulations to compare our scheme with the existing algorithms available in the literature. The numerical results show the relevance and improved efficiency of our scheme.