z-logo
Premium
Enhanced redesigned spatial modulation: Design and performance evaluation under correlated fading channels
Author(s) -
Gudla Vishnu Vardhan,
Kumaravelu Vinoth Babu
Publication year - 2020
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.4294
Subject(s) - computer science , fading , spatial modulation , spectral efficiency , modulation (music) , algorithm , spatial correlation , mimo , channel (broadcasting) , antenna (radio) , monte carlo method , euclidean distance , upper and lower bounds , electronic engineering , telecommunications , mathematics , statistics , artificial intelligence , physics , mathematical analysis , acoustics , engineering
Summary Spatial modulation techniques (SMTs) have emerged as promising multiple‐input and multiple‐output (MIMO) technology for fifth generation (5G) networks, which can achieve an appealing trade‐off between conflicting design objectives such as reliability, hardware cost, complexity, spectral efficiency, and energy efficiency. Most of the SMTs suffer from significant performance deterioration under correlated fading channels. In this paper, a novel spectral efficient SMT referred as enhanced redesigned spatial modulation (EReSM) is proposed, which is robust against adverse channel correlation effects. At any time instant, EReSM activates either one or two transmit antennas and employs a robust bits to antenna index mapping that ensures the selection of antenna subsets with maximum spatial separation to mitigate the effect of spatial correlation. EReSM also exploits phase rotation of transmitted symbols as an additional dimension to convey an extra information bit. The rotation angles used for bit mapping are optimized for various modulation schemes to maximize the minimum euclidean distance between the symbols. To analyze the performance, analytical upper bound expression for average bit error probability (ABEP) is derived for both uncorrelated and spatially correlated channel conditions. Monte Carlo simulation results substantiate the accuracy of the analytical results and also demonstrate that the proposed EReSM outperform conventional redesigned spatial modulation (ReSM) by at least 4 dB.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here