Premium
Efficient data management and control over WSNs using SDN‐enabled aerial networks
Author(s) -
Sayeed Mohd Abuzar,
Kumar Rajesh,
Sharma Vishal
Publication year - 2019
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.4170
Subject(s) - computer science , wireless sensor network , computer network , timer , control reconfiguration , network topology , distributed computing , base station , controller (irrigation) , real time computing , topology (electrical circuits) , wireless , embedded system , telecommunications , agronomy , biology , mathematics , combinatorics
Summary The recent developments in collaborative search, acquisition, and tracking have hoisted the geographical barrier. The network between unmanned aerial vehicles (UAVs) and wireless sensor networks (WSNs) is one such collaboration, which comprises battery‐powered static sensor nodes that act as sources and sinks and UAVs that act as relays. This collaborative network presents with opportunities and advantages, but at the same time, configuration of such networks is an arduous task. The WSN nodes are characterized by constant depleting power. Their network itself requires constant management and reconfiguration. These requisites can be slaked through the formation of an efficient data dissemination algorithm, which acclimates according to the network state. Considering this, a data dissemination approach is presented in this paper, which constructs a virtual topology predicated on the charge of WSN nodes utilizing software‐defined networks (SDNs) through UAVs. The topology is constantly monitored and reconfigured when required. The aerial nodes are equipped with multiple‐input multiple‐output (MIMO) antennas in order to facilitate simultaneous communication with the ground nodes, the base station, and the SDN controller. An efficient sleep timer and backoff counter strategies are also utilized by the proposed approach. The SDN controller facilitates the topology formation and maintenance of a sleep timer and a backoff counter. The proposed model is compared with clustered hierarchical layouts and hexagonal cell layouts through the network simulations. The results suggest significant improvements in the proposed model for various metrics, such as lifetime, delay, latency, delivery ratio, and throughput in comparison with the existing solutions.