z-logo
Premium
Design and acceptance test of compact planar monopole antenna for LTE smartphone considering SAR, TRP, and HAC values
Author(s) -
Das Saumya,
Bose Tanushree,
Islam Hashinur
Publication year - 2019
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.4155
Subject(s) - handset , computer science , ground plane , specific absorption rate , bandwidth (computing) , miniaturization , wireless , antenna (radio) , electronic engineering , telecommunications , electrical engineering , engineering
Summary Eight different types of compact multiband planar antennas are proposed in this work for covering several long‐term evaluation (LTE) and Wi‐Fi bands in a smartphone antenna design. Gradual inclusion of several sections of a radiator on an inexpensive FR4 substrate is presented for receiving multi‐LTE bands with a handset device. Along with the presently available LTE bands, this antenna design approach also includes upcoming LTE in unlicensed spectrum and LTE licensed‐assisted access. Various techniques such as partial ground, branch line slit, parasitic structure, and meandered lines are used to achieve desired resonant frequencies, bandwidth, matching, and miniaturization. The final type of eight antennas has been implemented in the real‐world mobile phone handset. The interaction between the mobile handset and the human phantom model has been analyzed at few specific frequencies for evaluating specific absorption rate (SAR) and total radiated power (TRP) in a simulated manner. The same type is also studied as a hearing aid compatibility (HAC)–supported wireless device. The simulated results show the SAR and HAC values are at the acceptance level for this proposed design. A prototype model is developed and few parameters are measured for validation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here