Premium
Virtual network function–forwarding graph embedding: A genetic algorithm approach
Author(s) -
Pham Tran Anh Quang,
Sanner JeanMichel,
Morin Cédric,
HadjadjAoul Yassine
Publication year - 2019
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.4098
Subject(s) - computer science , virtual network , quality of service , distributed computing , software deployment , computer network , operating system
Summary Network function virtualization (NFV) provides a simple and effective mean to deploy and manage network and telecommunications' services. A typical service can be expressed in the form of a virtual network function–forwarding graph (VNF‐FG). Allocating a VNF‐FG is equivalent to place VNFs and virtual links onto a given substrate network considering resources and quality‐of‐service (QoS) constraints. The deployment of VNF‐FGs in large‐scale networks, such that QoS measures and deployment cost are optimized, is an emerging challenge. Single‐objective VNF‐FGs allocation has been addressed in existing literature; however, there is still a lack of studies considering multiobjective VNF‐FGs allocation. In addition, it is not trivial to obtain optimal VNF‐FGs allocation due to its high computational complexity even in case of single‐objective VNF‐FGs allocation. Genetic algorithms (GAs) have been proved its ability in coping with multiobjective optimization problems; thus, we propose a GA‐based scheme to solve multiobjective VNF‐FGs allocation problem in this paper. The numerical results confirm that the proposed scheme can provide near Pareto‐optimal solutions within a short execution time.