Premium
Comparison of self‐adaptive dynamic differential evolution and particle swarm optimization for smart antennas in wireless communication
Author(s) -
Chiu ChienChing,
Tong YiXiang,
Cheng YuTing
Publication year - 2019
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.3941
Subject(s) - computer science , particle swarm optimization , multipath propagation , beamforming , differential evolution , bit error rate , wireless , electronic engineering , mathematical optimization , algorithm , telecommunications , channel (broadcasting) , mathematics , engineering
Summary In this paper, ultrawide band (UWB) communication systems with eight transmitting and receiving ring antenna arrays are implemented to test the bit error rate and capacity performance. By using the ray‐tracing technique to compute any given indoor wireless environment, the impulse response of the system can be calculated. The synthesized beamforming problem can be reformulated into a multiobjective optimization problem. Self‐adaptive dynamic differential evolution (SADDE) and particle swarm optimization (PSO) are used to find the excitation current and the feed line length of each antenna to form the appropriate beam pattern. This pattern can then reduce the bit error rate and increase the channel capacity and receiving energy. Numerical results show that the fitness value and the convergence speed by the SADDE are better than those by the PSO. Moreover, the SADDE had better results for both line‐of‐sight and nonline‐of‐sight cases. In other words, compared with PSO, SADDE has improved more effectively the main beam radiation energy and reduced the multipath interference.