Premium
Iterative channel estimation and pilot design rules for high‐mobility comb‐pilot OFDM system
Author(s) -
Jin Jie,
Chen Meihao,
Jiang Xiaoxiao,
Ai Baoli,
Wu Enkai
Publication year - 2019
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.3933
Subject(s) - computer science , channel (broadcasting) , orthogonal frequency division multiplexing , nyquist–shannon sampling theorem , pilot signal , interference (communication) , electronic engineering , real time computing , telecommunications , engineering , computer vision
Summary With wireless communications in high‐mobility environment becoming popular, this poses a big challenge for communication systems based on the comb‐pilot OFDM, such as IEEE 802.11p, since it has not the enough pilots to estimate the time‐ and frequency‐selective channel accurately. In this paper, several comb‐pilot schemes and three comb‐pilot design rules are proposed to meet the Nyquist criterion for sampling the vehicle‐to‐vehicle (V2V) channel and the requirements of second‐order statistic of V2V channel. Based on the proposed pilot schemes, an iterative channel estimation method from the CE‐BEM model is proposed, together with three ICI cancellation methods. After thorough simulation, the effectiveness of the comb‐pilot design rules, the proposed channel estimation method, and intercarrier interference (ICI) cancellation methods is verified. Compared with other channel estimation methods, the proposed method performs better. The simulation results also reveal that the channel order L+1 has a great impact on the performance of the comb‐pilot OFDM system.