Premium
A secure channel code‐based scheme for privacy preserving data aggregation in wireless sensor networks
Author(s) -
Lakshmi V.S.,
Deepthi P.P.
Publication year - 2018
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.3832
Subject(s) - computer science , encryption , homomorphic encryption , data aggregator , wireless sensor network , decoding methods , computer network , scheme (mathematics) , data security , theoretical computer science , algorithm , mathematics , mathematical analysis
Summary Data aggregation is an efficient method to reduce the energy consumption in wireless sensor networks (WSNs). However, data aggregation schemes pose challenges in ensuring data privacy in WSN because traditional encryption schemes cannot support data aggregation. Homomorphic encryption schemes are promising techniques to provide end to end data privacy in WSN. Data reliability is another main issue in WSN due to the errors introduced by communication channels. In this paper, a symmetric additive homomorphic encryption scheme based on Rao‐Nam scheme is proposed to provide data confidentiality during aggregation in WSN. This scheme also possess the capability to correct errors present in the aggregated data. The required security levels can be achieved in the proposed scheme through channel decoding problem by embedding security in encoding matrix and error vector. The error vectors are carefully designed so that the randomness properties are preserved while homomorphically combining the data from different sensor nodes. Extensive cryptanalysis shows that the proposed scheme is secure against all attacks reported against private‐key encryption schemes based on error correcting codes. The performance of the encryption scheme is compared with the related schemes, and the results show that the proposed encryption scheme outperforms the existing schemes.