z-logo
Premium
Millimeter‐wave signal generation and transmission to multiple radio access units by employing nonlinearity of the optical link
Author(s) -
Mehmood Tayyab,
Ghafoor Salman
Publication year - 2018
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.3830
Subject(s) - subcarrier , computer science , transmission (telecommunications) , optical carrier transmission rates , electronic engineering , extremely high frequency , radio over fiber , radio frequency , telecommunications , orthogonal frequency division multiplexing , engineering , channel (broadcasting)
Summary Fifth‐generation communication demands seamless multi–giga‐bit per second data transmission in its small‐sized ultradense cells. The congestion‐free millimeter‐wave spectrum is the best option to be utilized for high data rate transmission. Generation and transmission of millimeter‐wave signals in the electrical domain is challenging mainly owing to bandwidth limitation of electronic components. Therefore, optical generation and transmission of these high‐frequency signals are a feasible option. In this work, we propose all‐optical millimeter‐wave signal generation and transmission in a centralized radio‐over‐fiber architecture. The proposed architecture performs all the major optical signal processing tasks at the central unit by eliminating the requirement of light sources and local oscillators at the multiple radio access units. Therefore, a potentially simplified and cost‐effective solution for fifth‐generation mobile networks is demonstrated through simulation results. Nonlinearity of the Mach‐Zehnder modulator and of a highly nonlinear dispersion‐shifted fiber is exploited to generate coherent optical carriers from a single centralized laser source instead of several separate laser sources. The coherent optical carriers are used to perform remote heterodyne detection at the radio access units and at the central unit to generate millimeter‐wave signals. Each of the four radio access units receives data from the central unit at a rate of 512 Mbps over two subcarrier multiplexed signals. Each of the radio access unit transmits the uplink data received from the mobile units at a rate of 128 Mbps and centered at a frequency of 25 GHz. It has been demonstrated through simulations that the proposed system gives acceptable bit error rate results.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here