Premium
OW‐SVM: Ontology and whale optimization‐based support vector machine for privacy‐preserved medical data classification in cloud
Author(s) -
Karlekar Nandkishor P.,
Gomathi N
Publication year - 2018
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.3700
Subject(s) - computer science , support vector machine , naive bayes classifier , data mining , ontology , feature selection , machine learning , cloud computing , artificial intelligence , genetic algorithm , decision tree , philosophy , epistemology , operating system
Summary Cloud is a multitenant architecture that allows the cloud users to share the resources via servers and is used in various applications, including data classification. Data classification is a widely used data mining technique for big data analysis. It helps the learners to discover hidden data patterns by training massive data collected from the real world. Because this trained model is the private asset of an entity, it should be protected from all other noncollaborative entities. Therefore, it is essential to take effective measures to preserve the confidential data. The objective of this paper is to preserve the privacy of the confidential data in the cloud environment by introducing the medical data classification method. In view of that, this paper presents a method for medical data classification using a novel ontology and whale optimization‐based support vector machine (OW‐SVM) approach. Initially, privacy‐preserved data are developed adopting Kronecker product bat approach, and then, ontology is built for the feature selection process. Ontology and whale optimization‐based support vector machine is then proposed by integrating ontology and whale optimization algorithm into SVM, in which ontology and whale optimization algorithm is used for the feasible selection of kernel parameters. The experiment is done using 3 heart disease datasets, such as Cleveland, Switzerland, and Hungarian. In a comparative analysis, the performance of the OW‐SVM approach is compared with that of K‐nearest neighbor, Naive Bayes, decision tree, SVM, and OW‐SVM, using accuracy, sensitivity, specificity, and fitness, as the evaluation metrics. The OW‐SVM approach could achieve maximum performance with accuracy of 83.21%, the sensitivity of 91.49%, specificity of 73%, and fitness of 81.955, outperforming existing comparative techniques.