z-logo
Premium
An intelligent and knowledge‐based overlapping clustering protocol for wireless sensor networks
Author(s) -
Khanmohammadi Sohrab,
Gharajeh Mohammad Samadi
Publication year - 2018
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.3577
Subject(s) - computer science , wireless sensor network , computer network , cluster analysis , network packet , routing protocol , base station , distributed computing , artificial intelligence
Summary Overlapping is one of the topics in wireless sensor networks that is considered by researchers in the last decades. An appropriate overlapping management system can prolong network lifetime and decrease network recovery time. This paper proposes an intelligent and knowledge‐based overlapping clustering protocol for wireless sensor networks, called IKOCP. This protocol uses some of the intelligent and knowledge‐based systems to construct a robust overlapping strategy for sensor networks. The overall network is partitioned to several regions by a proposed multicriteria decision‐making controller to monitor both small‐scale and large‐scale areas. Each region is managed by a sink, where the whole network is managed by a base station. The sensor nodes are categorized by various clusters using the low‐energy adaptive clustering hierarchy (LEACH)‐improved protocol in a way that the value of p is defined by a proposed support vector machine–based mechanism. A proposed fuzzy system determines that noncluster heads associate with several clusters in order to manage overlapping conditions over the network. Cluster heads are changed into clusters in a period by a suggested utility function. Since network lifetime should be prolonged and network traffic should be alleviated, a data aggregation mechanism is proposed to transmit only crucial data packets from cluster heads to sinks. Cluster heads apply a weighted criteria matrix to perform an inner‐cluster routing for transmitting data packets to sinks. Simulation results demonstrate that the proposed protocol surpasses the existing methods in terms of the number of alive nodes, network lifetime, average time to recover, dead time of first node, and dead time of last node.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here