Premium
Invincible AODV to detect black hole and gray hole attacks in mobile ad hoc networks
Author(s) -
Sandhya Venu Vasantha,
Avula Damodaram
Publication year - 2018
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.3518
Subject(s) - computer science , computer network , mobile ad hoc network , wireless ad hoc network , ad hoc on demand distance vector routing , optimized link state routing protocol , vehicular ad hoc network , network packet , packet drop attack , node (physics) , routing protocol , wireless , telecommunications , engineering , structural engineering , link state routing protocol
Summary Today's communication world is majorly driven by mobile nodes that demand wireless systems for their data relay. One such network is mobile ad hoc network, which is a purely wireless network with which communication is feasible instantly without any aid of preexisting infrastructure; due to this magnificent feature, it has a wide variety of applications. Mobile ad hoc network hinges on cooperative nature of the mobile nodes for relaying data. But at the same time, nodes relaying data for others may compromise, leading to various security attacks. Two main security attacks that drastically bring down the performance of mobile ad hoc network are black hole and gray hole attacks. In this paper, we propose 2 versions of invincible Ad hoc On‐Demand Distance Vector protocol to detect black hole and gray hole nodes that have bypassed preventive mechanism during route discovery process. First is the basic version, which is based on node‐to‐node frame check sequence tracking mechanism, and second is the enhanced version, which is based on signed frame check sequence tracking mechanism. They create a deterrent environment addressing all kinds of black and gray hole attacks. They also provide reliable data transmission to all the nonmalicious nodes in the network by using end‐to‐end authentication mechanism. Simulation results show better performance in packet delivery ratio when compared with other contemporary solutions while addressing all kinds of black and gray hole attacks. It shows significant improvement in end‐to‐end delay and normalized routing load over Ad hoc On‐Demand Distance Vector under black hole or gray hole attacks and also shows better throughput and packet delivery ratio than the existing solution.