Premium
Low‐complexity energy efficient power allocation scheme for DAS with maximum power constraint
Author(s) -
Yu Xiangbin,
Wang Hao,
Wen Benben,
Liu Tao
Publication year - 2018
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.3502
Subject(s) - computer science , rayleigh fading , mathematical optimization , distributed antenna system , power (physics) , constraint (computer aided design) , antenna (radio) , transmitter power output , energy consumption , fading , telecommunications , mathematics , electrical engineering , channel (broadcasting) , engineering , transmitter , physics , geometry , quantum mechanics
Summary In this paper, a low‐complexity optimal power allocation (PA) scheme is developed to maximize energy efficiency (EE) in a distributed antenna system (DAS) under maximum power constraint and target bit error rate (BER) requirement. Composite Rayleigh fading, multiple receive antennas, and dynamic circuit power consumption are all considered in the system. Unlike conventional schemes, the presented scheme provides a closed‐form expression of PA. Firstly, the optimization problem is formulated according to the definition of EE. Using the Karush‐Kuhn‐Tucker conditions, a general form of the optimal PA, in which the number of active antennas and corresponding power allocation are required only, is then proposed. With this general form, an effective algorithm is presented to yield the closed‐form PA. The proposed scheme can be applied to the system with static circuit power consumption and/or without target BER constraint to obtain optimal PA. Simulation results corroborate the effectiveness of the developed scheme, and the scheme can achieve the same EE performance as the existing optimal schemes with lower complexity. Moreover, the distributed antenna system with multiple receive antennas has higher EE than that with single receive antenna.