Premium
Network condition and application‐based data adaptive intelligent message routing in vehicular network
Author(s) -
Purkait Rajesh,
Tripathi Sachin
Publication year - 2017
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.3483
Subject(s) - computer science , computer network , routing protocol , broadcasting (networking) , network packet , geographic routing , packet forwarding , vehicular ad hoc network , wireless ad hoc network , link state routing protocol , wireless , telecommunications
Summary Recent advances in intelligent transportation systems enable a broad range of potential applications that significantly improve the vehicle and road safety and facilitate the efficient dissemination of information among the vehicles. To assist the vehicle traffic, message broadcasting is a widely adopted technique for road safety. But efficient message broadcasting is a significant issue, especially in a high network density due to the broadcast storm problem. To solve this issue, several methods are proposed to eliminate the redundant transmission of safety packets. However, they lack in restricting the broadcasting region of safety messages, and the transmissions of safety packets outside the dangerous region, and force the vehicles to unnecessary detours. This paper proposes an adaptive multimode routing protocol, network condition, and application‐based data adaptive intelligent message routing in vehicular network (NetCLEVER) that supports 2 modes of operation such as message broadcasting and intelligent routing. In message broadcasting mode, the NetCLEVER decides the dangerous region of the network by considering the changes of neighbor vehicles velocity, instead of current vehicle velocity, because a vehicle decision in velocity is interdependent with the preceding vehicles. In intelligent routing mode, the NetCLEVER exploits the cuckoo search optimization in routing by taking into account multiple routing factors such as the road topology of intersections and traffic signals and their impact on link stability, which improves the reliability of routing packets significantly. The performance evaluation illustrates that the proposed NetCLEVER improves reliable wireless communication as well as road safety in vehicular ad hoc networks.