Premium
Pricing framework for almost blank subframe scheme in two‐tier heterogeneous networks
Author(s) -
Li Li,
Zhou Zhaorong,
Hu Yanjun,
Jiang Tao,
Wei Menghan
Publication year - 2018
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.3454
Subject(s) - macrocell , subframe , stackelberg competition , computer science , base station , computer network , interference (communication) , heterogeneous network , telecommunications , wireless , wireless network , mathematics , channel (broadcasting) , mathematical economics
Summary As a part of enhanced inter‐cell interference coordination (eICIC), almost blank subframe (ABS) is an efficient technique to mitigate the cross‐tier interference of two‐tier heterogeneous networks (HetNets) and enhance overall network performance. However, in small cells with closed subscriber group (CSG) mode, how to motivate small cell base stations (SBSs) to adopt ABS schemes is still one of technical challenges due to the selfish nature of SBSs. In this paper, we propose a pricing framework with ABS scheme that benefit both the macrocell and small cell tier. Within the proposed framework, each SBS with closed access policy performs ABS scheme by muting a portion of the whole frame in time domain, and then dedicating this interference‐free subframe to macrocell users (MUs) for exclusive use. In return, the macrocell base station (MBS) announces the price for these ABSs and offers a certain amount of revenue to each SBS according to the length of its ABS. Furthermore, we extend the small cell performance analysis to the scenario of hybrid access policy, which allow neighboring MUs to access small cells. To investigate the interaction between two tiers, we formulate the proposed framework as a one‐leader multiple‐follower Stackelberg game, which regards the MBS and SBSs as leader and followers, respectively. On the basis of the theoretical analysis, we prove that a unique Stackelberg equilibrium (SE) exists and obtain the optimal strategies for both tiers. Numerical results evaluate the utility performance of both tiers when SE is achieved and verify the validity of the proposed framework.