z-logo
Premium
A genetic algorithm‐based task scheduling for cloud resource crowd‐funding model
Author(s) -
Zhang Nan,
Yang Xiaolong,
Zhang Min,
Sun Yan,
Long Keping
Publication year - 2017
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.3394
Subject(s) - computer science , cloud computing , scheduling (production processes) , distributed computing , roulette , genetic algorithm , resource (disambiguation) , idle , algorithm , computer network , mathematical optimization , machine learning , operating system , geometry , mathematics
Summary With the rapid development of cloud computing, the number of cloud users is growing exponentially. Data centers have come under great pressure, and the problem of power consumption has become increasingly prominent. However, many idle resources that are geographically distributed in the network can be used as resource providers for cloud tasks. These distributed resources may not be able to support the resource‐intensive applications alone because of their limited capacity; however, the capacity will be considerably increased if they can cooperate with each other and share resources. Therefore, in this paper, a new resource‐providing model called “crowd‐funding” is proposed. In the crowd‐funding model, idle resources can be collected to form a virtual resource pool for providing cloud services. Based on this model, a new task scheduling algorithm is proposed, RC‐GA (genetic algorithm for task scheduling based on a resource crowd‐funding model). For crowd‐funding, the resources come from different heterogeneous devices, so the resource stability should be considered different. The scheduling targets of the RC‐GA are designed to increase the stability of task execution and reduce power consumption at the same time. In addition, to reduce random errors in the evolution process, the roulette wheel selection operator of the genetic algorithm is improved. The experiment shows that the RC‐GA can achieve good results.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here