Premium
Cognitive radio network with coordinated multipoint joint transmission
Author(s) -
Reasat Tahsin,
Saha Abir,
Uddin Md. Forkan
Publication year - 2017
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.3310
Subject(s) - cognitive radio , computer science , scheduling (production processes) , transmission (telecommunications) , throughput , heuristic , channel (broadcasting) , optimization problem , integer programming , spectral efficiency , computer network , wireless , mathematical optimization , algorithm , telecommunications , artificial intelligence , mathematics
Summary Cognitive radio (CR) is considered to be a promising technology for future wireless networks to make opportunistic utilization of the unused or underused licensed spectrum. Meanwhile, coordinated multipoint joint transmission (CoMP JT) is another promising technique to improve the performance of cellular networks. In this paper, we propose a CR system with CoMP JT technique. We develop an analytical model of the received signal‐to‐noise ratio at a CR to determine the energy detection threshold and the minimum number of required samples for energy detection–based spectrum sensing in a CR network (CRN) with CoMP JT technique. The performance of energy detection–based spectrum sensing under the developed analytical model is evaluated by simulation and found to be reliable. We formulate an optimization problem for a CRN with CoMP JT technique to configure the channel allocation and user scheduling for maximizing the minimum throughput of the users. The problem is found to be a complex mixed integer linear programming. We solve the problem using an optimization tool for several CRN instances by limiting the number of slots in frames. Further, we propose a heuristic‐based simple channel allocation and user scheduling algorithm to maximize the minimum throughput of the users in CRNs with CoMP JT technique. The proposed algorithm is evaluated via simulation and found to be very efficient.