Premium
Improved generalized spatial modulation via antenna selection
Author(s) -
Pillay Narushan,
Xu Hongjun
Publication year - 2016
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.3236
Subject(s) - computer science , edas , antenna (radio) , gsm , spectral efficiency , euclidean distance , algorithm , telecommunications , channel (broadcasting) , artificial intelligence , estimation of distribution algorithm
Summary When a high spectral efficiency is needed, the cost of Euclidean distance‐based antenna selection for spatial modulation (EDAS‐SM) in terms of hardware, size, and computational complexity is significantly increased because of the large transmit antenna array required. In comparison, generalized spatial modulation (GSM) can match the spectral efficiency of EDAS‐SM, while using significantly fewer transmit antenna elements. However, the error performance of GSM is naturally limited because of the use of a predetermined and fixed set of transmit antenna combinations. By exploiting knowledge of the channel, the optimal set of transmit antenna combinations can be selected by maximizing the minimum Euclidean distance between transmit vectors. In this paper, an adaptive scheme for selection of the optimal set of transmit antenna combinations is proposed to improve the reliability of GSM. The computational overhead of the said scheme is relatively high; hence, a low‐complexity suboptimal scheme for selection of the set of transmit antenna combinations is further proposed. The improved GSM schemes address the spectral efficiency limitation of EDAS‐SM, while demonstrating superior error performance.