Premium
A survey of cross‐layer protocols for IEEE 802.11 wireless multi‐hop mesh networks
Author(s) -
Sheikh Sajid M.,
Wolhuter Riaan,
Engelbrecht Herman A.
Publication year - 2017
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.3129
Subject(s) - computer science , wireless mesh network , computer network , ieee 802.11s , wireless network , mesh networking , physical layer , routing protocol , hazy sighted link state routing protocol , distributed computing , wireless , dynamic source routing , routing (electronic design automation) , telecommunications
Summary There has been an escalation in deployment and research of wireless mesh networks by both the business community and academia in the last few years. Their attractive characteristics include low deployment cost, a low‐cost option to extend network coverage and ease of maintenance due to their self‐healing properties. Multiple routes exist between the sender and receiver nodes because of the mesh layout that ensures network connectivity even when node or link failures occur. Recent advances among others include routing metrics, optimum routing, security, scheduling, cross‐layer designs and physical layer techniques. However, there are still challenges in wireless mesh networks as discussed in this paper that need to be addressed. Cross‐layer design allows information from adjacent and non‐adjacent layers to be used at a particular layer for performance improvement. This paper presents a survey of cross‐layer protocol design approaches applied to the IEEE 802.11 standards for wireless multi‐hop mesh networks that have been proposed over the last few years for improved performance. We summarize the current research efforts in cross‐layer protocol design using the IEEE 802.11 standard in identifying unsolved issues that are a promising avenue to further research. Copyright © 2016 John Wiley & Sons, Ltd.