Premium
Performance modeling of FEC‐based unequal error protection for H.264/AVC video streaming over burst‐loss channels
Author(s) -
Kuo ChunI,
Shieh CeKuen,
Hwang WenShyang,
Ke ChihHeng
Publication year - 2014
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.2826
Subject(s) - computer science , forward error correction , real time computing , packet loss , video quality , channel (broadcasting) , lossy compression , network packet , computer network , transmission (telecommunications) , decoding methods , telecommunications , metric (unit) , operations management , artificial intelligence , economics
Summary Unequal error protection systems are a popular technique for video streaming. Forward error correction (FEC) is one of error control techniques to improve the quality of video streaming over lossy channels. Moreover, frame‐level FEC techniques have been proposed for video streaming because of different priority video frames within the transmission rate constraint on a Bernoulli channel. However, various communication and storage systems are likely corrupted by bursts of noise in the current wireless behavior. If the burst losses go beyond the protection capacity of FEC, the efficacy of FEC can be degraded. Therefore, our proposed model allows an assessment of the perceived quality of H.264/AVC video streaming over bursty channels, and is validated by simulation experiments on the NS‐2 network simulator at a given estimate of the packet loss ratio and average burst length. The results suggest a useful reference in designing the FEC scheme for video applications, and as the video coding and channel parameters are given, the proposed model can provide a more accurate evaluation tool for video streaming over bursty channels and help to evaluate the impact of FEC performance on different burst‐loss parameters. Copyright © 2014 John Wiley & Sons, Ltd.