Premium
Price‐based interference management in dense femtocell systems
Author(s) -
Wang Xiaocheng,
Han Qiaoni,
Guan Xinping,
Ma Kai
Publication year - 2013
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.2636
Subject(s) - macrocell , femtocell , computer science , telecommunications link , interference (communication) , computer network , stackelberg competition , base station , power control , quality of service , channel (broadcasting) , power (physics) , physics , mathematics , mathematical economics , quantum mechanics
SUMMARY Femtocell technology has been drawing considerable attention as a cost‐effective means of improving cellular coverage and capacity. However, under co‐channel deployment, femtocell system in dense environment may incur high uplink interference to existing macrocells and experiences strong inter‐cell interference at the same time. To manage the uplink interference to macrocell, as well as the inter‐cell interference, this paper proposes a price‐based uplink interference management scheme for dense femtocell systems. Specifically, on the one hand, to guarantee the macrocell users' quality of service, the macrocell base station prices the interference from femtocell users (FUEs) subject to a maximum tolerable interference power constraint. On the other hand, the inter‐cell interference is also taken into consideration. Moreover, a Stackelberg game model is adopted to jointly study the utility maximization of the macrocell base station and FUEs. Then, in order to reduce the amount of information exchange, we design a distributed power allocation algorithm for FUEs. In addition, admission control is adopted to protect the active FUEs' performance. Numerical results show that the price‐based interference management scheme is effective. Meanwhile, it is shown that the distributed power allocation combined with admission control is capable of robustly protecting the performance of all the active FUEs. Copyright © 2013 John Wiley & Sons, Ltd.