z-logo
Premium
Green wireless local area network received signal strength dimensionality reduction and indoor localization based on fingerprint algorithm
Author(s) -
Ma Lin,
Zhou Caifa,
Qin Danyang,
Xu Yubin
Publication year - 2014
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.2633
Subject(s) - rss , computer science , fingerprint (computing) , wi fi , algorithm , dimensionality reduction , blossom algorithm , computation , wireless , computer network , software deployment , matching (statistics) , wireless network , real time computing , artificial intelligence , telecommunications , statistics , mathematics , operating system
SUMMARY Green wireless local area network (WLAN) is an emerging technology to achieve both the purposes of power conservation and high‐speed accessing to the Internet because of the working on‐demand strategy adoption and high density access points (APs) deployment. Although it is good news to data traffic service, Green WLAN brings severe challenges to the indoor localization service based on fingerprint algorithm. Redundant APs will greatly enlarge the radio map and introduce a much heavier computation burden to the terminal for localization in the online phase. In addition, APs in Green WLAN are powered on and off to make balances between data traffic service demand and energy saving goals so that the received signal strength (RSS) sampled online and recorded in the radio map offline are rarely matched in the same detected AP number, which leads to asymmetric matching problem occurring in the fingerprint algorithm. In this paper, we propose to make a nonlinear dimensionality reduction on the RSS by local discriminant embedding algorithm to realize both the computation burden decreasing and asymmetric matching problem resolving for the fingerprint algorithm in Green WLAN. The simulation results show that our proposed methods could effectively reduce the computation burden in the online phase and make the fingerprint algorithm operate more robustly when the RSS is reduced to the intrinsic dimensionality in Green WLAN. Copyright © 2013 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here