z-logo
Premium
Cooperative bargaining solution for efficient and fair spectrum management in cognitive wireless networks
Author(s) -
Guan Zhangyu,
Yuan Dongfeng,
Zhang Haixia,
Ding Lei
Publication year - 2014
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.2553
Subject(s) - cognitive radio , computer science , subcarrier , maximization , mathematical optimization , competition (biology) , resource allocation , wireless , bargaining problem , spectral efficiency , frequency allocation , operations research , computer network , mathematical economics , telecommunications , economics , channel (broadcasting) , orthogonal frequency division multiplexing , mathematics , ecology , biology
SUMMARY This paper studies the fairness among the primary users (PUs) and the secondary users (SUs) for resource allocation in cognitive radio systems. We propose a novel co‐opetition strategy based on the Kalai–Smorodinsky bargaining solution to balance the system efficiency and the fairness among users. The strategy formulates the spectrum sharing problem as a nonlinear and integral sum utility maximization subject to a set of constraints describing the co‐opetition among the PUs and the SUs. Then, we solve the maximization problem by proposing a heuristical method that consists of four steps: multi‐PU competition, PU's subcarrier contribution, multi‐SU competition, and SU's subcarrier contribution. Extensive simulation results are presented by comparing the co‐opetition strategy with several conventional ones, including the Kalai–Smorodinsky bargaining solution, sum rate maximization as well as the Max–Min. Results indicate that the co‐opetition strategy can jointly balance the system efficiency and fairness in multiuser resource allocation, as it is able to support more satisfied users and in the meanwhile improve the utility of those unsatisfied. Moreover, the co‐opetition can help enable the coexistence of the PUs and the SUs in cognitive radio systems. Copyright © 2013 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here