Premium
Chunk‐based and fairness‐based resource allocation in multicast distributed MISO‐OFDMA systems
Author(s) -
Papoutsis Vasileios D.,
Stamouli Alexia P.
Publication year - 2014
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.2523
Subject(s) - multicast , computer science , subcarrier , computer network , resource allocation , orthogonal frequency division multiple access , quality of service , base station , telecommunications link , distributed computing , orthogonal frequency division multiplexing , channel (broadcasting)
SUMMARY The resource allocation problem for the downlink of orthogonal frequency‐division multiple access (OFDMA) wireless multicast systems is investigated. It is assumed that the base station consists of multiple antennas in a distributed antenna system (DAS), whereas each user is equipped with a single antenna. The multicasting technology is able to support several groups of users with flexible quality of service (QoS) requirements. The general mathematical formulation is provided, but achieving the optimal solution has a high computational cost. In our approach, the allocation unit is not the subcarrier, as in conventional OFDMA systems, but a set of contiguous subcarriers, which is called ‘chunk’. For practical implementation, a suboptimal but efficient algorithm is proposed in order to maximize the sum of the maximum attainable data rates of multicast groups of users, subject to total available power and proportional maximum attainable data rate constraints among multicast groups of users. Simulation and complexity analyses are provided to support the benefits of chunk‐based resource allocation to multicast OFDMA DASs, supporting that the proposed algorithm can be applied to latest‐generation wireless systems that provide QoS guarantees. Copyright © 2013 John Wiley & Sons, Ltd.