z-logo
Premium
Parallel relay‐assisted three‐phase MIMO space division multiple access transmission for multi‐hop throughput improvement
Author(s) -
Zhao Pengkai
Publication year - 2014
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.2481
Subject(s) - computer science , space division multiple access , computer network , relay , mimo , phy , network packet , hop (telecommunications) , throughput , physical layer , channel (broadcasting) , wireless , telecommunications link , telecommunications , power (physics) , physics , quantum mechanics
SUMMARY Multi‐hop communications equipped with parallel relay nodes is an emerging network scenario visible in environments with high node density. Conventional interference‐free medium access control (MAC) has little capability in utilizing such parallel relays because it essentially prohibits the existence of co‐channel interference and limits the feasibility of concurrent communications. This paper aims at presenting a cooperative multi‐input multi‐output (MIMO) space division multiple access (SDMA) design that uses each hop's parallel relay nodes to improve multi‐hop throughput performance. Specifically, we use MIMO and SDMA to enable concurrent transmissions (from multiple Tx nodes to single/multiple Rx nodes) and suppress simultaneous links' co‐channel interference. As a joint physical layer (MAC/PHY) solution, our design has multiple MAC modules including load balancing that uniformly splits traffic packets at parallel relay nodes and multi‐hop scheduling taking co‐channel interference into consideration. Meanwhile, our PHY layer modules include distributive channel sounding that exchanges channel information in a decentralized manner and link adaptation module estimating instantaneous link rate per time frame. Simulation results validate that compared with interference‐free MAC or existing Mitigating Interference using Multiple Antennas (MIMA‐MAC), our proposed design can improve end‐to‐end throughput by around 30% to 50%. In addition, we further discuss its application on extended multi‐hop topology. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here