Premium
Reduced‐frame TDMA protocols for wireless sensor networks
Author(s) -
Jovanovic Milica D.,
Djordjevic Goran L.
Publication year - 2014
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.2439
Subject(s) - time division multiple access , computer science , computer network , frame (networking) , throughput , wireless , wireless sensor network , node (physics) , multiple access with collision avoidance for wireless , real time computing , channel (broadcasting) , interference (communication) , wireless network , key distribution in wireless sensor networks , telecommunications , engineering , structural engineering
SUMMARY Time‐division multiple‐access (TDMA) is a common medium access control paradigm in wireless sensor networks. However, in its traditional form, the TDMA‐based protocols suffer from low channel utilization and high message delay because of a long frame length needed to provide collision‐free transmissions, which is particularly damaging in dense wireless sensor networks. In this paper, we investigate the performance and the energy efficiency of a class of TDMA‐based protocols, called reduced‐frame TDMA, where every TDMA slot is augmented with a short time period dedicated for carrier sense multiple access‐based contention resolution mechanism. Because of their ability to dynamically resolve collisions caused by conflicting slot assignments, the reduced‐frame TDMA protocols can be configured with any frame length, independently of node density. In addition, we present a distributed heuristic slot assignment algorithm that minimizes interslot interference in the presence of limited number of slots per frame. The simulation results indicate that the reduced‐frame TDMA protocols significantly reduce the message delay and increase the maximum throughput without incurring significant penalty in energy efficiency compared with the traditional TDMA scheme. Copyright © 2012 John Wiley & Sons, Ltd.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom