z-logo
Premium
Integrating machine learning in ad hoc routing: A wireless adaptive routing protocol
Author(s) -
Russell Brian,
Littman Michael L.,
Trappe Wade
Publication year - 2011
Publication title -
international journal of communication systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.344
H-Index - 49
eISSN - 1099-1131
pISSN - 1074-5351
DOI - 10.1002/dac.1202
Subject(s) - computer science , computer network , dynamic source routing , wireless routing protocol , link state routing protocol , zone routing protocol , distributed computing , optimized link state routing protocol , static routing , routing protocol , enhanced interior gateway routing protocol , destination sequenced distance vector routing , network packet
Abstract The nodes in a wireless ad hoc network act as routers in a self‐configuring network without infrastructure. An application running on the nodes in the ad hoc network may require that intermediate nodes act as routers, receiving and forwarding data packets to other nodes to overcome the limitations of noise, router congestion and limited transmission power. In existing routing protocols, the ‘self‐configuring’ aspects of network construction have generally been limited to the construction of routes that minimize the number of intermediate nodes on a route while ignoring the effects that the resulting traffic has on the overall communication capacity of the network. This paper presents a context‐aware routing metric that factors the effects of environmental noise and router congestion into a single time‐based metric, and further presents a new cross‐layer routing protocol, called Warp‐5 (Wireless Adaptive Routing Protocol, Version 5), that uses the new metric to make better routing decisions in heterogeneous network systems. Simulation results for Warp‐5 are presented and compared to the existing, well‐known AODV ( Ad hoc On‐Demand Distance Vector) routing protocol and the reinforcement‐learning based routing protocol, Q‐routing. The results show Warp‐5 to be superior to shortest path routing protocols and Q‐routing for preventing router congestion and packet loss due to noise. Copyright © 2011 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here