z-logo
Premium
Simultaneous analysis of antigen‐specific B and T cells after SARS‐CoV‐2 infection and vaccination
Author(s) -
Newell Krista L.,
Waldran Mitchell J.,
Thomas Stephen J.,
Endy Timothy P.,
Waickman Adam T.
Publication year - 2022
Publication title -
cytometry part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.316
H-Index - 90
eISSN - 1552-4930
pISSN - 1552-4922
DOI - 10.1002/cyto.a.24563
Subject(s) - antigen , flow cytometry , b cell , biology , immune system , t cell , immunology , vaccination , virology , microbiology and biotechnology , antibody
Conventional methods for quantifying and phenotyping antigen‐specific lymphocytes can rapidly deplete irreplaceable specimens. This is due to the fact that antigen‐specific T and B cells have historically been analyzed in independent assays each requiring millions of cells. A technique that facilitates the simultaneous detection of antigen‐specific T and B cells would allow for more thorough immune profiling with significantly reduced sample requirements. To this end, we developed the B and T cell tandem lymphocyte evaluation (BATTLE) assay, which allows for the simultaneous identification of SARS‐CoV‐2 Spike reactive T and B cells using an activation induced marker (AIM) T cell assay and dual‐color B cell antigen probes. Using this assay, we demonstrate that antigen‐specific B and T cell subsets can be identified simultaneously using conventional flow cytometry platforms and provide insight into the differential effects of mRNA vaccination on B and T cell populations following natural SARS‐CoV‐2 infection.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom