Premium
Machine Learning of Discriminative Gate Locations for Clinical Diagnosis
Author(s) -
Ji Disi,
Putzel Preston,
Qian Yu,
Chang Ivan,
Mandava Aishwarya,
Scheuermann Richard H.,
Bui Jack D.,
Wang HuanYou,
Smyth Padhraic
Publication year - 2020
Publication title -
cytometry part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.316
H-Index - 90
eISSN - 1552-4930
pISSN - 1552-4922
DOI - 10.1002/cyto.a.23906
Subject(s) - gating , discriminative model , computer science , classifier (uml) , artificial intelligence , cytometry , machine learning , pattern recognition (psychology) , population , flow cytometry , biology , medicine , physiology , genetics , environmental health
Abstract High‐throughput single‐cell cytometry technologies have significantly improved our understanding of cellular phenotypes to support translational research and the clinical diagnosis of hematological and immunological diseases. However, subjective and ad hoc manual gating analysis does not adequately handle the increasing volume and heterogeneity of cytometry data for optimal diagnosis. Prior work has shown that machine learning can be applied to classify cytometry samples effectively. However, many of the machine learning classification results are either difficult to interpret without using characteristics of cell populations to make the classification, or suboptimal due to the use of inaccurate cell population characteristics derived from gating boundaries. To date, little has been done to optimize both the gating boundaries and the diagnostic accuracy simultaneously. In this work, we describe a fully discriminative machine learning approach that can simultaneously learn feature representations (e.g., combinations of coordinates of gating boundaries) and classifier parameters for optimizing clinical diagnosis from cytometry measurements. The approach starts from an initial gating position and then refines the position of the gating boundaries by gradient descent until a set of globally‐optimized gates across different samples are achieved. The learning procedure is constrained by regularization terms encoding domain knowledge that encourage the algorithm to seek interpretable results. We evaluate the proposed approach using both simulated and real data, producing classification results on par with those generated via human expertise, in terms of both the positions of the gating boundaries and the diagnostic accuracy. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.