z-logo
Premium
Three‐dimensional image cytometer based on widefield structured light microscopy and high‐speed remote depth scanning
Author(s) -
Choi Heejin,
Wadduwage Dushan N.,
Tu Ting Yuan,
Matsudaira Paul,
So Peter T. C.
Publication year - 2015
Publication title -
cytometry part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.316
H-Index - 90
eISSN - 1552-4930
pISSN - 1552-4922
DOI - 10.1002/cyto.a.22584
Subject(s) - frame rate , lens (geology) , computer science , microscopy , optics , sensitivity (control systems) , population , depth of field , artificial intelligence , large format , field of view , computer vision , physics , demography , electronic engineering , sociology , engineering
A high throughput 3D image cytometer have been developed that improves imaging speed by an order of magnitude over current technologies. This imaging speed improvement was realized by combining several key components. First, a depth‐resolved image can be rapidly generated using a structured light reconstruction algorithm that requires only two wide field images, one with uniform illumination and the other with structured illumination. Second, depth scanning is implemented using the high speed remote depth scanning. Finally, the large field of view, high NA objective lens and the high pixelation, high frame rate sCMOS camera enable high resolution, high sensitivity imaging of a large cell population. This system can image at 800 cell/sec in 3D at submicron resolution corresponding to imaging 1 million cells in 20 min. The statistical accuracy of this instrument is verified by quantitatively measuring rare cell populations with ratio ranging from 1:1 to 1:10 5 . © 2014 International Society for Advancement of Cytometry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here