z-logo
Premium
Multi‐parameter dose estimations in radiation biodosimetry using the automated cytokinesis‐block micronucleus assay with imaging flow cytometry
Author(s) -
Rodrigues M. A.,
BeatonGreen L. A.,
Kutzner B. C.,
Wilkins R. C.
Publication year - 2014
Publication title -
cytometry part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.316
H-Index - 90
eISSN - 1552-4930
pISSN - 1552-4922
DOI - 10.1002/cyto.a.22511
Subject(s) - biodosimetry , micronucleus test , cytometry , flow cytometry , dosimetry , micronucleus , binucleated cells , biomedical engineering , nuclear medicine , biology , medicine , physics , irradiation , immunology , ionizing radiation , toxicity , nuclear physics
The cytokinesis‐block micronucleus (CBMN) assay is an established technique in radiation biological dosimetry for estimating the dose to an individual by measuring the frequency of micronuclei (MN) in binucleated lymphocyte cells (BNCs). The assay has been partially automated using slide‐scoring algorithms, but an automated multiparameter method without the need of the slide‐making procedure would be advantageous to further increase throughput for application in mass casualty events. The development of the ImageStream X (ISX) imaging flow cytometer has made it possible to adapt the CBMN assay to an automated imaging flow cytometry (FCM) method. The protocol and analysis presented in this work tailor and expand the assay to a multiparameter biodosimetry tool. Ex vivo irradiated whole blood samples were cultured, processed, and analyzed on the ISX and BNCs, MN, and mononuclear cells were imaged, identified, and enumerated automatically and simultaneously. Details on development of the method, gating strategy, and dose response curves generated for the rate of MN per BNC, percentage of mononuclear cells as well as the replication index are presented. Results indicate that adapting the CBMN assay for use in imaging FCM has produced a rapid, robust, multiparameter analysis method with higher throughput than is currently available with standard microscopy. We conclude that the ISX‐CBMN method may be an advantageous tool following a radiological event where triage biodosimetry must be performed on a large number of casualties. © 2014 International Society for Advancement of Cytometry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here