z-logo
Premium
Single‐cell tracking with a reversing flow cytometer
Author(s) -
Sitton Greg,
Srienc Friedrich
Publication year - 2011
Publication title -
cytometry part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.316
H-Index - 90
eISSN - 1552-4930
pISSN - 1552-4922
DOI - 10.1002/cyto.a.20999
Subject(s) - population , flow cytometry , cell , tracking (education) , cytometry , single cell analysis , biophysics , chemistry , biology , microbiology and biotechnology , medicine , biochemistry , psychology , pedagogy , environmental health
Abstract We have developed an instrument based on a flow cytometer platform that is capable of tracking individual, suspended cells over extended time periods. The instrument repeatedly moves in a capillary the same volume segment of fluid containing tens to hundreds of suspended cells through the focal point of a laser. Individual cells are then tracked based on the timing of when they cross the laser, and cell properties are measured as in a conventional flow cytometer. Because cells are repeatedly measured the single‐cell rates of change can be determined. The developed instrumentation was applied to measure the variability of ABC transporter activity in a population of human cancer cells and the temperature dependence of constitutively expressed Gfp in yeast. A wide range of transport rates can be observed in the cancer cell population while the single‐cell Gfp fluorescence in yeast shows pronounced oscillations in response to temperature shifts. These observations are not detectable at the population level. Therefore, such measurements are useful for investigating cell function as they reveal how variable properties of single cells change over time. © 2010 International Society for Advancement of Cytometry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here