z-logo
Premium
Finite Beta Electro‐Magnetic Effects at the Edge and the Role of the Scrape‐off Layer in the L‐H Transition
Author(s) -
Chankin A. V.,
Matthews G. F.
Publication year - 1998
Publication title -
contributions to plasma physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.531
H-Index - 47
eISSN - 1521-3986
pISSN - 0863-1042
DOI - 10.1002/ctpp.2150380126
Subject(s) - physics , plasma , gyroradius , radius , beta (programming language) , atomic physics , turbulence , coulomb , ion , omega , condensed matter physics , quantum mechanics , electron , thermodynamics , computer security , computer science , programming language
Abstract Magnetic induction becomes important when the skin‐depth equals the wavelength of the electrostatic drift turbulence: \documentclass{article}\pagestyle{empty}\begin{document}$ C/\sqrt 4 \pi \sigma \omega = K_ \bot ^{ - 1} $ \end{document} . It is predicted that this suppresses the longwave perturbations responsible for the bulk of the turbulent transport, providing an explanation for the L‐H transition. Since k ⟂ ρ s ≪ 1 at the edge (ρ s ‐ ion Larmor radius), this may occur at rather low β, typical of the separatrix parameters. The above equality is used to derive thresholds for the L‐H transition: β ≈ ( k ⟂ ρ s ) 2 (m e /m i )in the collisionless skin‐depth limit of very low density plasmas and \documentclass{article}\pagestyle{empty}\begin{document}$ T^3 _e \sim B^2 L_ \bot Z_{eff} /\sqrt m $\end{document} ( L ⟂‐perpendicular decay length) in the collisional skin‐depth limit of medium to high density plasmas. The latter is in a broad agreement with experiment, pointing to a possible role of low temperature collisional plasma (which is in the SOL) in the physics of the L‐H transition.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here