z-logo
Premium
Magnetogravitational Stability of Resistive Plasma through Porous Medium with Thermal Conduction and FLR Corrections
Author(s) -
Vaghela D. S.,
Chhajlani R. K.
Publication year - 1989
Publication title -
contributions to plasma physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.531
H-Index - 47
eISSN - 1521-3986
pISSN - 0863-1042
DOI - 10.1002/ctpp.2150290111
Subject(s) - magnetic field , thermal conduction , dispersion relation , condensed matter physics , physics , resistive touchscreen , adiabatic process , porous medium , electrical resistivity and conductivity , mechanics , materials science , porosity , thermodynamics , composite material , electrical engineering , engineering , quantum mechanics
The problem of stability of self gravitating magnetized plasma in porous medium is studied incorporating electrical resistivity, thermal conduction and FLR corrections. Normal mode analysis is applied to derive the dispersion relation. Wave propagation is discussed for parallel and perpendicular directions to the magnetic field. Applying Routh Hurwitz Criterion the stability of the medium is discussed and it is found that Jeans' criterion determines the stability of the medium. Magnetic field, porosity and resistivity of the medium have no effect on Jeans' Criterion in longitudinal direction. For perpendicular direction, in case of resistive medium Jeans' expression remains unaffected by magnetic field but for perfectly conducting medium magnetic field modifies the Jeans' expression to show the stabilizing effect. Thermal conducitivity affects the sonic mode by making the process isothermal instead of adiabatic. Porosity of the medium is effective only in case of perpendicular direction to magnetic field for perfectly conducting plasma as it reduces the stabilizing effect of magnetic field. For longitudinal wave propagation, though FLR corrections have no effect on sonic mode but it changes the growth rate for Alfvén mode. For transverse wave propagation FLR corrections and porosity affect the Jeans' expression in case of nonviscous medium but viscosity of the medium removes the effect of FLR and porosity on Jeans' condition.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here