Premium
A Dusty Plasma in a Non‐Self‐Sustained Gas Discharge at Atmospheric Pressure
Author(s) -
Fiippov A. V.,
Babichev V. N.,
Pal' A. F.,
Starostin A. N.,
Cherkovets V. E.
Publication year - 2016
Publication title -
contributions to plasma physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.531
H-Index - 47
eISSN - 1521-3986
pISSN - 0863-1042
DOI - 10.1002/ctpp.201500107
Subject(s) - physics , electric discharge in gases , atomic physics , dusty plasma , ionization , atmospheric pressure , plasma , electron , levitation , ion , mechanics , meteorology , quantum mechanics , magnet
A non‐self‐sustained (NSS) discharge at atmospheric gas pressure containing dust particles is studied. The NSS discharge was controlled by a stationary electron beam with energy up to 120 keV. A numerical model of the NSS discharge is based on the drift‐diffusion approach for electrons and ions and self‐consistently takes into account effects of the dust particles on the electron and ion densities. The dusty component is described by the number balance equation and the equation of motion for dust particles with allowance for the Stokes force, gravity force and electric force in the cathode sheath. Interaction between dust particles is described in the self‐consistent field approximation. It is established that, at a given gas ionization rate and given applied voltage, there is a critical dust particle size above which the levitation condition in the cathode sheath cannot be satisfied. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)